Arithmetic and the Reality of Numbers in the Late Latin Middle Ages

Main Article Content

Kamil Majcherek

Abstract

The late Middle Ages (ca. 1270-1400) in the Latin West witnessed an extraordinary rise of interest in the metaphysical status of numbers. This paper is a case study of one of the most popular arguments in favour of realism about numbers: the view according to which numbers are extramental entities distinct from the things that they number. Part one is a reconstruction of the realist argument, which is based on the commonly accepted division of sciences into real sciences and rational sciences. It is an equally commonly accepted claim that arithmetic is one of the real sciences. On the realist interpretation, for a science to be real, its object must be real. Thus, since the object of arithmetic is number, numbers must have extramental reality. Part two is an analysis of several most interesting anti-realist rebuttals of the above argument.

Downloads

Download data is not yet available.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
2
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
15%
33%
Days to publication 
364
145

Indexed in

Editor & editorial board
profiles
Academic society 
N/A
Publisher 
UCOPress

Article Details

How to Cite
Majcherek, K. (2025). Arithmetic and the Reality of Numbers in the Late Latin Middle Ages. Revista Española De Filosofía Medieval, 32(2), 55–70. https://doi.org/10.21071/refime.v32i2.17849
Section
ARTICLES

References

MANUSCRIPTS

Bernard of Auvergne. Reprobationes Henrici de Gandavo Quodlibet, ms. Bologna, Biblioteca Communale dell’Archiginnasio, cod. A.943.

Guido Terreni. Quodlibeta, ms. Vatican, Biblioteca Apostolica, cod. Borgh. 39, 14r-241v.

Peter Nigri. Clypeus Thomistarum, ms. Munich, Bayerische Staatsbibliothek, Clm 26722; ed. Venice 1481.

PRIMARY SOURCES

Francis of Marchia. Scriptum in I Sententiarum, provisional edition by G. Etzkorn.

Francis of Meyronnes. In I Sententiarum (Conflatus), ed. Venice 1520.

Henry of Harclay. In I Sententiarum, q. 48 (d. 24), edited by M. Sorokina, “Henri de Harclay sur l’ontologie des nombres: à l’origine d’un désaccord entre Pierre Auriol et Thomas Wylton”, Archives d’histoire doctrinale et littéraire du Moyen Age 89 (2022): 35-94. DOI: https://doi.org/10.3917/ahdlm.089.0035

Peter Auriol. Scriptum in I Sententiarum, d. 24, provisional edition by Maria Sorokina, pro manuscripto.

William of Ockham. Reportatio in I Sententiarum (henceforth Reportatio), d. 24, a. 2, in Guillelmi de Ockham Scriptum in librum primum Sententiarum. Distinctiones XIX–XLVIII, edited by G. Etzkorn and F. Kelley, vol. IV of Guillelmi de Ockham Opera Theologica, edited by G. Gál et al. (St. Bonaventure, NY: Franciscan Institute, 2000).

William of Rubio, In I Sententiarum, ed. Paris 1518.

SECONDARY SOURCES

Adams, Marilyn McCord. William of Ockham, 2 vols. (Notre Dame, IN: University of Notre Dame Press, 1987).

Duba, William O. “Neither First, nor Second, nor… in his Commentary on the Sentences. Francis of Marchia’s intentiones neutrae”, Quaestio 10: 285-313. DOI: https://doi.org/10.1484/J.QUAESTIO.1.102339

Duba, William O. “Three Franciscan Metaphysicians after Scotus: Antonius Andreae, Francis of Marchia, and Nicholas Bonet”, in A Companion to the Latin Medieval Commentaries on Aristotle’s Metaphysics, edited by F. Amerini and G. Galluzzo (Leiden-Boston: Brill, 2014), 413-493. DOI: https://doi.org/10.1163/9789004261297_013

Friedman, Russell L. “Peter Auriol on Intentions and Essential Predication”, in Medieval Analyses in Language and Cognition, edited by S. Ebbesen and R. L. Friedman (Copenhagen: The Royal Danish Academy of Sciences and Letters, 1999), 415-430.

Hardy, Godfrey F. A Mathematician’s Apology (Cambridge: Cambridge University Press, 1967).

Henninger, Mark. Relations: Medieval Theories 1250-1325 (Oxford: Oxford University Press, 1989).

Kelley, Francis E. “Walter Chatton vs. Aureoli and Ockham Regarding the Universal Concept”, Franciscan Studies 41 (1984): 222-49. DOI: https://doi.org/10.1353/frc.1981.0010

Linnebo, Øystein. “Platonism in the Philosophy of Mathematics”, in The Stanford Encyclopedia of Philosophy, edited by E. N. Zalta and U. Nodelman (Summer 2024 Edition), URL = <https://plato.stanford.edu/archives/sum2024/entries/platonism-mathematics/>.

Majcherek, Kamil. “What Is It to Be Real? Numbers as Real Species of a Category in the Late Medieval Debate about the Ontological Status of Numbers”, Archiv für Geschichte der Philosophie, no page numbers, available online at https://doi.org/10.1515/agph-2024-0036. DOI: https://doi.org/10.1515/agph-2024-0036

Majcherek, Kamil, “Can an Accident Inhere in More than One Subject? A Problem for Medieval Realism about Numbers”, in Pre-Modern Mathematical Thought: The Latin Discussion (13th-16th Century), edited by C. Crialesi (Leiden: Brill, 2025), 77-92. DOI: https://doi.org/10.1163/9789004734159_006

Pelletier, Jenny. William of Ockham on Metaphysics: The Science of Being and God (Leiden-Boston: Brill, 2012). DOI: https://doi.org/10.1163/9789004230163

Perler, Dominik. Theorien der Intentionalität im Mittelalter (Frankfurt am Main: Vittorio Klostermann, 2020).

Rode, Christian. “Peter Auriol on Universals and the Notion of Passive Conception”, in Universals in the Fourteenth Century, edited by F. Amerini and L. Cesalli (Pisa: Edizioni della Normale, 2017), 139-154.

Sorokina, Maria. “Numbering the Divine Persons: Mental Existence of Numbers in Duns Scotus, Henry of Harclay, and Peter Auriol”, Recherches de Théologie et Philosophie Médiévales 87/2 (2020): 417-439.