The Theory of Figural Concepts and GeoGebra: concept and visualization in Dynamic Geometry
Main Article Content
Abstract
The objective of this work is to present the resolution of a Mathematical Olympiad question on the area of flat figures using the GeoGebra software, observing the geometric reasoning and the relations established between concept and image by the students, based on the Theory of Figural Concepts. The methodology used in this work was the case study, seeking to observe and describe the strategies and difficulties of students in their resolution. For this study, a virtual meeting was held on the Google Meet platform, due to the COVID-19 pandemic, with a group of 20 students from 2nd year high school. As a result, the problem raised in the study is solved by exploring visualization and manipulation within the GeoGebra software environment.
Downloads
Article Details
This work is licensed under a Creative Common License (CC BY 3.0 ES)
References
Alves, F. R. V. (2019). Visualizing the Olympic Didactic Situation (ODS): teaching mathematics with support of the GeoGebra software. Acta Didactica Napocensia, 12(2), 97-116. doi: 10.24193/adn.12.2.8.
Alves, F. R. V. y Borges Neto, H. (2012). Engenharia Didática para a exploração didática da tecnologia no ensino no caso da regra de L'Hôpital. Educação Matemática Pesquisa, 14(2), 337 – 367. Recuperado en 15 octubre, 2020, de: https://revistas.pucsp.br/index.php/emp/article/view/9445
Becker, M. (2009). Uma alternativa para o ensino de Geometria: Visualização Geométrica e representações de sólidos no plano. Dissertación de Maestria, Universidade Federal do Rio Grande do Sul: Porto Alegre.
Bishop, A. J. (1983). Space and geometry. In Lesh, R. and Landau, M. (Eds.), Acquisition of Mathematics Concepts and Processes (pp. 175-203). New York: Academic Press.
Costa, A. P. (2020). Pensamento Geométrico: em busca de uma caracterização à luz de Fischbein, Duval e Pais. Revista Paranaense de Educação Matemática, 9(18), 152-179. Recuperado en 01 mayo, 2021, de: http://revista.unespar.edu.br/index.php/rpem/article/view/651
Fischbein, E. (1993). The Theory of Figural Concepts. Educational Studies in Mathematics, 24(2), 139-162. Recuperado en 05 noviembre, 2020. Recuperado de: http://www.jstor.org/stable/3482943
Fonseca, M. C. F. R., Lopes, M. P., Barbosa, M. G. G., Gomes, M. L. M. y Dayrell, M. M. M. S. S. (2001). O ensino de Geometria na Escola Fundamental: Três questões para a formação do professor dos ciclos iniciais. Belo Horizonte: Autêntica.
Gutiérrez, A. (1992). Exploring the links between Van Hiele levels and 3-dimensional Geometry. Departamento de Didática de las Matemáticas, Universidad de Valencia, Spain.
Hershkowitz, R. (1998). Reasoning in Geometry. In Hershkowitz, R., Duval, R., Bussi, M. G., Boero, P., Leher, R., Romberg, T., Berthelot, R., Sain, M. H., Salin, K. J. Perspectives on the Teaching of Geometry for the 21st Century. Volume 5 of the series New ICMI Study Series (pp. 29-83).
Iglesias, M. y Ortiz, J. (2018). Usos del software de geometría dinámica en la formación inicial de profesores de matemáticas. Matemáticas, Educación y Sociedad, 1(2), 21-35. Recuperado en 01 julio, 2021, de https://journals.uco.es/mes/article/view/12834
Jeannotte, D. y Kieran, C. (2017). A conceptual model of mathematical reasoning for school mathematics. Educational Studies in Mathematics, 96(1), 1-16. doi: 10.1007/s10649-017-9761-8
Kaleff, A. M. M. R. (2003). Vendo e entendendo poliedros: do desenho ao cálculo do volume através de quebra-cabeças e outros materiais concretos. Rio de Janeiro, Niterói: EdUFF.
King, J. y Schattschneider D. (2003). Geometry turned on! Dynamic software in teaching, learning & research. Lisboa: Associação de Professores de Matemática.
Kuckartz, U. (2014). Qualitative Text Analysis: A Guide to Methods, Practice and Using Software. London: SAGE Publications.
Leivas, J. C. P. y Cury, H. N. (2010). Análise de Erros em Soluções de um Problema de Geometria: uma Investigação com Professores em Formação Continuada. REVEMAT: Revista Eletrônica de Educação Matemática, 5(1), 71-83. doi: https://doi.org/10.5007/1981-1322.2010v5n1p71
Lorenzato, S. (1995). Por que ensinar geometria? Educação Matemática em Revista, SBEM, São Paulo, 3(4), 1-64.
Mariotti, A. (1992). Imagini e concetti in geometria. L'Insegnamento Della Matematica e Delle Scienze Integrata, 15(9), 863-885.
Obmep. (2013). Olimpíada Brasileira de Matemática das Escolas Públicas. Prova da OBMEP 2013/Nível 3, 2013. Recuperado en 06 mayo, 2021 de http://www.obmep.org.br/provas.htm.
Pais, L. C. (1996). Intuição, experiência e teoria geométrica. Revista Zetetiké, 6. doi: https://doi.org/10.20396/zet.v4i6.8646739.
Pavanello, R. M. (1993). O abandono do ensino da Geometria no Brasil: causas e consequências. Revista Zetetiké, 1(1). doi: https://doi.org/10.20396/zet.v1i1.8646822.
Piaget, J. y Inhelder, B. (1993). A Representação do Espaço na Criança. Artes Médicas: Porto Alegre.
Prieto González, J. L. (2016). GeoGebra en diferentes escenarios de actuación. Revista Electrónica Conocimiento Libre y Licenciamiento (CLIC), Nro 14, Año 7, 9-23.
Santiago, P. V. S., Alves, F. R. V. y Maia, B. M. P. (2021). Sobre a noção de Situação Didática Olímpica aplicada ao contexto das Olimpíadas Internacionais de Matemática. Remat – Revista da Sociedade Brasileira de Educação Matemática, São Paulo, 18, 1-20. doi: https://doi.org/10.37001/remat25269062v18id533.
Van de Walle, J. (2009). A Matemática no ensino fundamental: formação de professores e aplicação em sala de aula. Porto Alegre: Artes Médicas.
Yin, R. K. (2001). Estudo de Caso, planejamento e métodos. São Paulo: Bookman.