Setas para una agricultura sostenible – el concepto MUSA
Contenido principal del artículo
Resumen
El proyecto MUSA – MUshrooms for Sustainable Agriculture [Setas para una Agricultura Sostenible] es un esfuerzo para utilizar procesos basados en setas comestibles con el fin de mejorar la sostenibilidad de la agricultura en los países nórdicos y bálticos. El proyecto abarca tanto la producción de esporocarpos de hongos comestibles como el aprovechamiento del sustrato agotado resultante del cultivo de dichos hongos. Se investiga el uso de residuos de la agricultura nórdica y flujos subutilizados del manejo forestal, así como subproductos del procesamiento de la madera como sustrato para la producción de los hongos comestibles shiitake (Lentinula edodes) y pleuroto ostra (Pleurotus spp.). El proyecto explora el potencial del sustrato agotado de setas (SMS por sus siglas en inglés) para su uso en apoyo a la producción de alimentos. Se evalúa el potencial del SMS como fuente de compuestos bioactivos y de azúcares. Además, MUSA investiga el uso de los hidrolizados de SMS como fuente de carbono para la producción de aceite microbiano de calidad alimentaria cultivando levaduras oleaginosas. También se evalúa el uso del SMS para sustituir fertilizantes minerales y proporcionar soluciones de biorremediación de aguas residuales.
Descargas
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Política propuesta para revistas que ofrecen acceso abierto. Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
a) Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cual estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación en esta revista.
b) Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
Bibliografía
BLOMQVIST, J., PICKOVA, J., TILAMI, S.K. et al. (2018) Oleaginous yeast as a component in fish feed. Sci. Rep 8, 15945.
BRANDENBURG, J., BLOMQVIST, J., SHAPAVAL, V. et al. (2021) Oleaginous yeasts respond differently to carbon sources present in lignocellulose hydrolysate. Biotechnol. Biofuels 14, 124.
CARRASCO-GONZÁLEZ, J.A., SERNA-SALDÍVAR, S.O., GUTIÉRREZ-URIBE, J.A. (2017) Nutritional composition and nutraceutical properties of the Pleurotus fruiting bodies: Potential use as food ingredient. J. Food Compos. Anal. 58, 69−81.
CARVALHO, J.L.N., NOGUEIROL, R.C., et al. (2017) Agronomic and environmental implications of sugarcane straw removal: a major review. GCB Bioenergy 9, 1181–1195.
CHEN, F., MARTÍN, C., FINELL, M., XIONG, S. (2022a) Enabling efficient bioconversion of birch biomass by L. edodes: regulatory roles of nitrogen and bark additions on mushroom production and cellulose saccharification. Biomass Convers. Bior. 12, 1217–1227.
CHEN, F., MARTÍN, C., LESTANDER, T.A., GRIMM, A., XIONG, S. (2022b) Shiitake cultivation as biological preprocessing of lignocellulosic feedstocks – substrate changes in crystallinity, syringyl/guaiacyl lignin and degradation-derived by-products. Bioresour. Technol. 344, Part B, 126256.
CHEN, F., XIONG, S., GANDLA, M.L., STAGGE, S., MARTÍN, C. (2022c) Spent mushroom substrates for ethanol production – effect of chemical and structural factors on enzymatic saccharification and ethanolic fermentation of L. edodes-pretreated hardwood. Bioresour. Technol. 347, 126381.
CHMIELARZ, M., BLOMQVIST, J., SAMPELS, S., SANDGREN, M., PASSOTH, V. (2021) Microbial lipid production from crude glycerol and hemicellulosic hydrolysate with oleaginous yeasts. Biotechnol. Biofuels 14, 65.
DONNER, M., VERNIQUET, A., BROEZE, J., et al. (2021) Critical success and risk factors for circular business models valorising agricultural waste and by-products. Resour. Conserv. Recycl. 165, 105236.
EUROPEAN MUSHROOM GROWERS’ GROUP. Production figures. Retrieved from: http://www.infochampi.eu/production-figures/.
GOHAR, D., PÕLDMAA, K., et al. (2022) Global diversity and distribution of mushroom-inhabiting bacteria. Environ. Microbiol. Rep. 14, 254-264.
GOLOVKO, O., ÖRN, S., et al. (2021) Occurrence and removal of chemicals of emerging concern in wastewater treatment plants and their impact on receiving water systems. Sci. Tot. Environ. 754, 142122.
HU, T., WANG, X., et al. (2019) Effects of inoculation with lignocellulose-degrading microorganisms on antibiotic resistance genes and the bacterial community during cocomposting of swine manure with spent mushroom substrate. Environ. Pollut. 252, 110-118.
HUI, C., JIANG, H., et al. (2019) Chitin degradation and the temporary response of bacterial chitinolytic communities to chitin amendment in soil under different fertilization regimes. Sci. Total Environ. 705, 136003.
HULTBERG, M., AHRENS, L., GOLOVKO, O. (2020) Use of lignocellulosic substrate colonized by oyster mushroom (P. ostreatus) for removal of organic micropollutants from water. J. Environ. Manage. 272, 111087.
KHATRI, P., JAIN, S. (2017) Environmental life cycle assessment of edible oils: A review of current knowledge and future research challenges. J. Clean. Prod. 152, 63–76.
KLAUSEN, S.J.; FALCK-YTTER, A.B.; STRÆTKVERN, K.O.; MARTÍN, C. (2023) Evaluation of the extraction of bioactive compounds and the saccharification of cellulose as a route for the valorization of spent mushroom substrate. Molecules 28, 5140.
LEONG, Y.K., MA, T.W., et al. (2022). Recent advances and future directions on the valorization of spent mushroom substrate (SMS): A review. Bioresour. Technol. 344, 126157.
LUNDIN, H. (1950) Fat synthesis by micro-organisms and its possible applications in industry. J. Inst. Brewing 56, 17-28.
LYNCH, J., PIERREHUMBERT, R. (2019). Climate impacts of cultured meat and beef cattle. Front. Sustain. Food Syst. 5.
MARTÍN, C. (2021) Pretreatment of crop residues for bioconversion. Agronomy 11, 924.
MARTÍN, C., ZERVAKIS, G.I., XIONG, S., KOUTROTSIOS, G., STRÆTKVERN, K.O. (2023) Spent substrate from mushroom cultivation: exploitation potential towards various applications and value-added products. Bioengineered 14(1), 2252138.
MEDINA, E., PAREDES, C., et al. (2012) Relationships between soil physico-chemical, chemical and biological properties in a soil amended with spent mushroom substrate. Geoderma 173–174, 152-161.
MOMAYEZ, F., HEDENSTRÖM, M., STAGGE, S., JÖNSSON, L.J., MARTÍN, C. (2022) Valorization of hydrolysis lignin from a spruce-based biorefinery by applying -valerolactone treatment. Bioresour. Technol. 359, 127466.
MOUSAVI, H., COTTIS, T., HOFF, G., SOLBERG, S.Ø. (2022) Nitrogen enriched organic fertilizer (neo) and its effect on ryegrass yield and soil fauna feeding activity under controlled conditions. Sustainability 14, 2005.
PAROLA, S., CHIODAROLI, L., et al. (2017) L. edodes and P. ostreatus: functional food with antioxidant - antimicrobial activity and an important source of Vitamin D and medicinal compounds. Funct. Foods Health Dis. 7, 773-794.
PASSOTH, V., SANDGREN, M. (2019) Biofuel production from straw hydrolysates: current achievements and perspectives. Appl. Microbiol. Biotechnol. 103, 5105–5116.
PASSOTH, V., BRANDENBURG, J., CHMIELARZ, M., MARTÍN-HERNÁNDEZ, G. C., NAGARAJ, Y., MÜLLER, B., & BLOMQVIST, J. (2023) Oleaginous yeasts for biochemicals, biofuels and food from lignocellulose-hydrolysate and crude glycerol. Yeast 40, 290–302.
RAPOPORT, A., GUZHOVA, I., et al. (2021) Carotenoids and some other pigments from fungi and yeasts. Metabolites 11, 92.
ROYSE, D.J., BAARS, J., TAN, Q. (2017). Current overview of mushroom production in the world. In: Cunha Zied, D., Pardo-Giménez, A. (Eds.), Edible and Medicinal Fungi: Technology and Applications. John Wiley & Sons Ltd, Hoboken, NJ, pp. 5–13.
SIGTRYGGSSON, C., KARLSSON POTTER, H., PASSOTH, V. et al. (2023) From straw to salmon: a technical design and energy balance for production of yeast oil for fish feed from wheat straw. Biotechnol. Biofuels 16, 140.
SVENSKA SVAMPODLARFÖRENINGEN. Svenskodlad svamp – en närodlad delikates. http://www.svampodlarna.org/organisation/odlade-svampar-oversikt-o-marknad/. Retrieved May 2022.
UUSITALO, V., VÄISÄNEN, S., et al. (2014) Carbon footprint of renewable diesel from palm oil, jatropha oil and rapeseed oil. Renew. Energ. 69, 103-113.
XIONG, S.J., MARTÍN, C., et al. (2019) Energy-efficient substrate pasteurisation for combined production of shiitake mushroom (L. edodes) and bioethanol. Bioresour. Technol. 274, 65–72.
XU, S.-Y., WEI, J.-K., et al. (2022) Microbial inoculation influences microbial communities and physicochemical properties during lettuce seedling using composted spent mushroom substrate. Appl. Soil Ecol. 174, 104418.
ZHU, F., DU, B., XU, B.J. (2016) A critical review on production and industrial application of beta-glucans. Food Hydrocoll. 52, 275-288.
ZISOPOULOS, F.K., RAMÍREZ, H.A., et al. (2016) A resource efficiency assessment of the industrial mushroom production chain: the influence of data variability. J. Clean. Prod. 126, 394–408.