Circular economy case study: the development of a new physiological biostimulant from olive by-products

Main Article Content

Joaquín Romero Rodríguez
María Peñas de la Corte
Juan Nieto del Río
José Ramón Fernández Navarro
Lucia Polo Rabat

Abstract

Olive (Olea europaea) crop is a socio-economic driving force in the Mediterranean basin, with a notable expansion in recent years. Its waste represents an opportunity for the transition to a bioeconomy. The large volumes of water used have a high organic load, with polyphenols such as hydroxytyrosol (HT). New technological processes have made possible to extract and purify polyphenols, and thus to use them in different industries, such as the agri-food industry. The antioxidant and complexing properties of polyphenols, which have an impact on the hormonal balance of crops, give them a great potential for use as agricultural inputs. As a result, e-OLIVE has been formulated, a biostimulant that i) supports the elimination of reactive oxygen species (ROS) in situations of water stress and ii) acts on the hormonal balance of the crop. Under natural conditions, e-OLIVE has increased yield through less physiological drop and higher fruit weight, as well as increased fat yield. These results have been achieved through superior nutrient translocation and expression of hormones and hormone regulators such as AIA, AS and ABA.

Downloads

Download data is not yet available.

Article Details

How to Cite
Romero Rodríguez, J., Peñas de la Corte, M., Nieto del Río, J., Fernández Navarro, J. R., & Polo Rabat, L. (2023). Circular economy case study: the development of a new physiological biostimulant from olive by-products. C3-BIOECONOMY: Circular and Sustainable Bioeconomy, (4), 113–130. https://doi.org/10.21071/c3b.vi4.16238
Section
Success Cases

References

ACOSTA-ECHEVERRÍA, M., SÁNCHEZ-BRAVO, J., BAÑÓN-ARNAO, M. (2013). Auxinas. En J. Azcón-Bieto, j.,& M. Talón (Eds.), Fundamentos de Fisiología Vegetal (pp. 377-398). McGraw-Hill-INTERAMERICANA DE ESPAÑA, S.L.

ANDJELKOVIC, M., VAN CAMP, J., DE MEULENAER, B., DEPAEMELAERE, G., SOCACIU, C., VERLOO, M. AND VERHE, R. (2006) Iron-Chelation Properties of Phenolic Acids Bearing Catechol and Galloyl Groups. Food Chemistry. 98, 23-31. http://dx.doi.org/10.1016/j.foodchem.2005.05.044

BARRANCO, D., FERNÁNDEZ-ESCOBAR, R., RALLO, L. (2017). El cultivo del olivo. Madrid. Mundi-Prensa

BERBEL, J., & POSADILLO, A. (2018). Review and analysis of alternatives for the valorisation of agro-industrial olive oil by-products. Sustainability, 10(1),237. doi: https://doi.org/10.3390/su10010237.

BERMÚDEZ-ORIA, A., BOUCHAL, Y., FERNÁNDEZ-PRIOR, Á., VIOQUE, B., FERNÁNDEZ-BOLAÑOS, J. (2020). Strawberry Puree Functionalized with Natural Hydroxytyrosol: Effects on Vitamin C and Antioxidant Activity. Molecules. 10:5829.

BESNARD, G., TERRAL, J. F., CORNILLE, A. (2018). On the Origins and Domestication of the Olive: A Review and Perspectives. Annals of Botany. 121, 385–403. doi: https://doi.org/10.1093/aob/mcy002

BONILLA, I (2013). Introducción a la nutrición mineral de las plantas. Los elementos minerales. En J. Azcón-Bieto, j.,& M. Talón (Eds.), Fundamentos de Fisiología Vegetal (pp. 103-121). McGraw-Hill-INTERAMERICANA DE ESPAÑA, S.L.

BORREGO-MARÍN, M.M., BERBEL, J., GÓMEZ-LIMÓN, J.A., VILLANUEVA, A.J. (2021). Factores habilitantes y limitantes para el desarrollo empresarial de la Bioeconomía Circular. Análisis empírico para el caso de Andalucía. International Journal of Circular and Sustainable Bioeconomy. 2, 19–36. doi: https://doi.org/10.21071/c3b.vi2

BUJOR, O.C., TALMACIU, A., POPA, V.I. (2015). Biorefining to recover aromatic compounds with biological properties. TAPPI Journal. 14, 187–193.

CORNWELL, G. D., & MA, J. (2008). Nutritional benefits of olive oil: The biological effects of hydroxytyrosol and its arylating quinone adducts. Journal of Agricultural and Food Chemistry, 56, 8774–8786

DE MARCO, E., SAVARESE, M., PADUANO, A., SACCHI, R. (2007). Characterization and fractionation of phenolic compounds. Food Chemistry, 104, 858-867.

DROBEK, M., FRA˛C, M., CYBULSKA, J. (2019). Plant Biostimulants: Importance of the Quality and Yield of Horticultural Crops and the Improvement of Plant Tolerance to Abiotic Stress—A Review. Agronomy. 9: 335

EL-ABBASSI, A., KIAI, H., RAITI, J., HAFIDI, A. (2014). Cloud point extraction of phenolic compounds from pretreated olive mill wastewater. Journal of Environmental Chemical Engineering. 2, 1480-1486. doi: https://doi.org/10.1016/j.jece.2014.06.024

FAROQ, M.A., NIAZI, A.K., AKHTAR, J., FAROOQ, M., SOURI, Z., KARIMI, N., RENGEL, Z. (2013). Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiology and Biochemistry. 141, 353-369. doi: https://doi.org/10.1016/j.plaphy.2019.04.039.

GARCÍA-MORALES, S., GARCÍA-GAYTÁN, V., LEÓN-MORALES, J. M. (2021). Current Overview of Agricultural Biostimulants. Tópicos de Herramientas Biotecnológicas para el Desarrollo Agrícola, 14.

GARCÍA-SÁNCHEZ, M., GARRIDO, I., CASIMIRO, I. DE J., CASERO, P. J., ESPINOSA, F., GARCÍA-ROMERA, I., ARANDA, E (2012). Defence response of tomato seedlings to oxidative stress induced by phenolic compounds from dry olive mill residue. Chemosphere. 89: 708–716

GUIJA-POMA, E., INOCENTE-CAMONES, M.A., PONCE-PARDO, J., ZARZOSA-NORABUENA, E. (2015). Evaluación de la técnica 2,2-Difenil-1-Picrilhidrazilo (DPPH) para determinar capacidad antioxidante. Horizonte Médico. 15, 57-60.

HERZOG, V., FAHIMI, H.D. (1973). A new sensitive colorimetric assay for peroxidase using 3,3′-diaminobenzidine as hydrogen donor. Analytical Biochemistry. 55, 554-562. https://doi.org/10.1016/0003-2697(73)90144-9

KARIM-RUIZ, M.A. (2016). Efecto de hidroxitirosol sobre algunos biomarcadores cardiovasculares en la Diabetes Mellitus experimental. Málaga. Tesis Doctoral.

MAPA (Ministerio de Agricultura, Pesca y Alimentación) (2023). Aceite de oliva. Recuperado de: https://www.mapa.gob.es/es/agricultura/temas/producciones-agricolas/aceite-oliva-y-aceituna-mesa/aceite.aspx (consultado el 12 de junio de 2023).

MOJZER, E.B., HRNCIC, M.K., SKERGET, M., KNEZ, Z., BREN, U. (2016). Polyphenols: extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules. 21: 901–939.

PEYROL, J., MEYER, G., DESROIS, M., BERNARD, M., OBERT, P., DANGLES, O., PECHERE, L., AMIOT-CARLIN, M.J., RIVA, C. (2015). Effect of polyphenols of olive oil, hydroxytyrosol and its glucuronides on the vascular reactivity in a type 2 diabetes context. Archives of Cardiovascular Diseases Supplements. 7, 137-138.

PIERANTOZZI, P., TORRES, M., BODOIRA, R., MAESTRI, D (2013). Water relations, biochemical – physiological and yield responses of olive trees (Olea europaea L. cvs. Arbequina and Manzanilla) under drought stress during the pre-flowering and flowering period. Agricultural Water Management. 125, 13-25. doi: https://doi.org/10.1016/j.agwat.2013.04.003

POLONIO, D., VILLANUEVA, A.J., GÓMEZ-LIMÓN, J.A. (2022). Cuantificación de los recursos biomásicos del sector oleícola en Andalucía: una aproximación actualizada. International Journal of Circular and Sustainable Bioeconomy. 3, 7–34. doi: https://doi.org/10.1093/aob/mcy002

RIUS, X. (2022). Aspectos del cambio climático en olivar. Fruticultura. 85: 58-71.

QUERO, M. (2022). Efectos de bioestimulantes sobre el Sistema antioxidante de Solanum lycopersium cv. Micro-tom. Universidad de Sevilla.

SCIUBBA, F., CHRONOPOULOU, L., PIZZICHINI, D., LIONETTI, V., FONTANA, C., AROMOLO, R., SOCCIARELLI, S., GAMBELLI, L., BARTOLACCI, B., FINOTTI, E., BENEDETTI, A., MICCHELI, A., NERI, U., PALOCCI, C., BELLINCAMPI, D. (2020). Olive Mill Wastes: A Source of Bioactive Molecules for Plant Growth and Protection against Pathogens. Biology. 9: 450.

SEGOVIA-BRAVO, K.A., GARCÍA-GARCÍA, A., LÓPEZ-LÓPEZ, A., GARRIDO-FERNÁNDEZ, A. (2011). Characterization of polyphenol oxidase from the Manzanilla cultivar (Olea europaea pomiformis) and prevention of browning reactions in bruised olive fruits. Journal of Agricultural and Food Chemistry. 55, 6515-6520. doi: http://dx.doi.org/10.1021/jf063675f

SHARMA, A.K., SINGH, H., CHAKRAPANI, H. (2019). Photocontrolled endogenous reactive oxygen species (ROS) generation. Chemical Comunications. 55, 5259-5262. doi: https://doi.org/10.1039/C9CC01747J

SILVA, A.F.R., RESENDE, D., MONTEIRO, M., COIMBRA, M.A., SILVA, A.M.S., CARDOSO, S.M. (2020). Application of Hydroxytyrosol in the Functional Foods Field: From Ingredient to Dietary Supplements. Antioxidants. 9, 1246

STEVENSON, F. J. (1994). Humus chemistry: Genesis, composition, reactions. New York. Wiley and Sons.

TADEO, F.R., & GOMEZ-CADENAS, A. (2013). Fisiología de las plantas y el estrés. En J. Azcón-Bieto, j.,& M. Talón (Eds.), Fundamentos de Fisiología Vegetal (pp. 577-598). McGraw-Hill-INTERAMERICANA DE ESPAÑA, S.L.

TANASE, C., BUJOR, O.-C., POPA, V. I. (2019). Phenolic Natural Compounds and Their Influence on Physiological Processes in Plants. Polyphenols in Plants, 2019; 45–58.

TUNA, S., AKPINAR-BAYZIT, A. (2009). The use of B-Glucosidase enzyme in black table olives fermentation. Notulae Botanicae Horti Agrobotanici Clujnapoca. 37, 182-189. doi: https://doi.org/10.15835/nbha3723145

LOZANO-JUSTE, J, ET AL. (2023). Structure-guided engineering of a receptor-agonist pair for inducible activation of the ABA adaptive response to drought. Science. 9: DOI: 10.1126/sciadv.ade9948

YANG, Z., ET AL. (2019). Abscisic Acid Receptors and Coreceptors Modulate Plant Water Use Efficiency and Water Productivity. Plant Physiology. 180, 1066-1080

YANGUI, T., SAYADI, S., CHAKROUN, H., & DHOUIB, A (2011). Effect of hydroxytyrosol-rich preparations on phenolic-linked antioxidant activity of seeds. Engineering in Life Sciences. 11, 511-516