Machine Translation and Tourism Discourse A Spanish-English-French Study on the Localisation of the Websites of the Top Tourist Attractions in Spain
Contenu principal de l'article
Résumé
In the last few decades, tourism has consistently played a significant role in the Spanish economy. Spain, one of the world's most popular tourist destinations, received 9.6 million international tourists in September 2024, according to the Spanish National Institute of Statistics (INE, 2024a). Due to the significance of the tourism sector, it is particularly important that Spain’s most visited tourist attractions offer high-quality information in multiple languages on their websites to ensure that as many people as possible look up the information contained therein, as businesses and other stakeholders in the tourism sector can benefit significantly from website localisation. For this study, the linguistic adequacy of the websites of Spain’s top 20 tourist attractions as well as their official localised versions in English and French were analysed by taking into account a series of parameters related to best practices in web localisation (Olvera-Lobo and Castillo-Rodríguez, 2019; Tercedor Sánchez, 2005). Furthermore, the official localised websites in English and French were compared with the translation proposals of DeepL and Google Translate to assess the quality of the machine-translated tourism-themed content. The results obtained show poor quality in terms of localisation and linguistic adequacy for the official Spanish, English and French versions of the analysed websites. Regarding the overall assessment of the machine-translated content, DeepL performed better than Google Translate and outperformed the official websites localised into English in terms of linguistic quality.
Téléchargements
Details de l'article
Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
Les auteurs qui publient dans cette revue acceptent les conditions suivantes :
- Les auteurs conservent les droits d'auteur et accordent à la revue le droit de première publication du travail simultanément sous une Licence Creative Commons Attribution, permettant à d'autres de partager le travail en reconnaissant la paternité du travail et sa publication initiale dans cette revue.
- Les auteurs peuvent conclure des accords contractuels supplémentaires séparément pour la distribution non exclusive de la version publiée du travail dans la revue (par exemple, l'envoyer à un référentiel institutionnel ou le publier dans un livre), avec une reconnaissance de sa publication initiale dans cette revue.
- Il est permis et encouragé aux auteurs de publier leurs travaux en ligne (par exemple, dans des référentiels institutionnels ou sur leur site Web) avant et pendant le processus de soumission, car cela peut entraîner des échanges productifs, ainsi qu'une citation plus précoce et plus importante du travail publié (voir L'effet de l'accès ouvert).
Références
Agorni, M. (2022). Corporate Website Translation and Effective Communication Strategies. The Costs of Language Deficiencies. Lingue Linguaggi, 52, 31-44. https://doi.org/10.1285/I22390359V52P31
Baack, D. W., & Singh, N. (2007). Culture and Web Communications. Journal of Business Research, 60(3), 181–188. https://doi.org/10.1016/j.jbusres.2006.11.002
Briva-Iglesias, V. (2021). Traducción humana vs. Traducción automática: Análisis contrastivo e Implicaciones para la Aplicación de la Traducción automática en Traducción jurídica. Mutatis Mutandis, 14(2), 571-600. https://doi.org/10.17533/udea.mut.v14n2a14
Castilho, S., Doherty, S., Gaspari, F., & Moorkens, J. (2018). Approaches to Human and Machine Translation Quality Assessment. In J. Moorkens, S. Castilho, F. Gaspari & S. Doherty (Eds), Machine Translation: Technologies and Applications (pp. 9-38). Springer International Publishing. https://doi.org/10.1007/978-3-319-91241-7_2
Cuadrado Rey, A., & Navarro Brotons, L. (2024). Aproximación a la traducción automática de culturemas gastronómicos en el ámbito turístico: estudio de caso (español, alemán, francés). Hikma, 23(1), 111-139. https://doi.org/10.21071/hikma.v23i1.15694
Daems, J., & Macken, L. (2019). Interactive Adaptive SMT versus Interactive Adaptive NMT: a User Experience Evaluation. Machine Translation, 33, 117-134. https://doi.org/10.1007/s10590-019-09230-z
DeepL. (n.d.). Press Information: Media Kit. https://www.deepl.com/en/press
Fuentes-Luque, A., & Santamaría Urbieta, A. (2020). Machine Translation Systems and Guidebooks: an Approach to the Importance of the Role of the Human Translator. Onomázein, Núm. Especial 7, 63-82. https://doi.org/10.7764/onomazein.ne7.04
Giampieri, P., & Harper, M. (2023). Tourism Translation: from Corpus to Machine Translation (and back). Umanistica Digitale, 6(14), 119-135. https://doi.org/10.6092/ISSN.2532-8816/15109
Görög, A. (2014). Dynamic Quality Framework: Quantifying and Benchmarking Quality. Tradumàtica - Tecnologies de la Traducció, 12, 443-454. https://doi.org/10.5565/rev/tradumatica.66
Grego, K. S. (2010). Specialized Translation: Theoretical Issues, Operational Perspectives. Polimetrica International Scientific Publisher.
Gutiérrez-Artacho, J., Olvera-Lobo, M. D., & Rivera-Trigueros, I. (2019). Competencia comunicativa y nuevas tecnologías en el proceso de localización web: modelo MDPT para la formación de profesionales en localización. Fuentes, 21(1), 73-84. https://doi.org/10.12795/revistafuentes.2018.v21.i1.05
Hidalgo-Ternero, C. M. (2021). Google Translate vs. DeepL. Analysing Neural Machine Translation Performance under the Challenge of Phraseological Variation. MonTI. Monografías de Traducción e Interpretación, Núm. Especial 6, 154-177. https://doi.org/10.6035/monti.2020.ne6.5
Instituto Nacional de Estadística. (2023). Cuenta satélite del turismo de España. Año 2022. [Press release] https://www.ine.es/prensa/cst_2022.pdf
Instituto Nacional de Estadística. (2024a). Estadística de Movimientos Turísticos en Fronteras (FRONTUR) Septiembre 2024. Datos provisionales. [Press release]. https://t.ly/27ooT
Instituto Nacional de Estadística. (2024b). Movimientos Turísticos en Fronteras. Número de turistas según país de residencia. https://www.ine.es/jaxiT3/Datos.htm?t=10822
International Organisation for Standardisation (ISO). (2017). ISO 18587:2017(en) Translation services — Post-editing of Machine Translation Output — Requirements. https://www.iso.org/obp/ui/en/#iso:std:iso:18587:ed-1:v1:en
International Organisation for Standardisation (ISO). (2023). ISO 639:2023(en) Code for Individual Languages and Language Groups. https://www.iso.org/obp/ui/en/#iso:std:iso:639:ed-2:v1:en
Jiménez-Crespo, M. A. (2013). Translation and web Localization. Routledge.
Kelly, D. (2002). Un modelo de competencia traductora: bases para el diseño curricular. Puentes, 1, 9-20.
Kenny, D. (Ed.). (2022). Machine Translation for Everyone: Empowering Users in the Age of Artificial Intelligence. Language Science Press. https://doi.org/10.5281/zenodo.6653406
Kumar, J., Kumar Henge, S., & Dubey, P. (2022). An Intensive Literature Review on Machine Translation Using Neural Approach. In P. K. Singh, Y. Singh, M. H. Kolekar, A. K. Kar. & P. J. S. Gonçalves (Eds.), Recent Innovations in Computing. Lecture Notes in Electrical Engineering, Vol. 832 (pp. 45-59). Springer. https://doi.org/10.1007/978-981-16-8248-3_4
Le, Q. V., & Schuster, M. (2016). A Neural Network for Machine Translation, at Production Scale. Google Research Blog. https://t.ly/6F7ud
Leiva Rojo, J. (2020). ¿Es la traducción automática una opción factible? Reflexiones acerca de un estudio comparado de textos museísticos traducidos (inglés-español). In S. Rodríguez Tapia & A. González Fernández (Eds.), Lenguas y turismo: estudios en torno al discurso, la didáctica y la divulgación (pp. 179-200). Peter Lang.
Lommel, A. (2018). Metrics for Translation Quality Assessment: A Case for Standardising Error Typologies. In J. Moorkens, S. Castilho, F. Gaspari & S. Doherty (Eds.), Translation Quality Assessment: From Principles to Practice (pp. 109-127). Springer International Publishing. https://doi.org/10.1007/978-3-319-91241-7_6
Lommel, A., Uszkoreit, H., & Burchardt, A. (2014). Multidimensional Quality Metrics (MQM): A Framework for Declaring and Describing Translation Quality Metrics. Tradumàtica - Tecnologies de la Traducció, 12, 455-463. https://doi.org/10.5565/rev/tradumatica.77
López González, R. C. (2020). Putting Touristic Destinations On The Map Through Translation: How Public Institutions Provide Multilingual Visual Guides. In C. Sarmento & M. Quincé (Eds.), Intercultural Routes Across Multicultural Spaces. From Theory to Dialogue (pp. 57-77). Centro de Estudos Interculturais.
Martín R., C. (2022). Los 20 monumentos más visitados de España. Expansión. https://t.ly/85Rta
Mehler, A., Sharoff, S., & Santini, M. (Eds.). (2010). Genres on the Web: Computational Models and Empirical Studies. Springer Science & Business Media.
O’Brien, S. (2022). How to Deal with Errors in Machine Translation: Post editing. In D. Kenny (Ed.), Machine translation for everyone: Empowering users in the age of artificial intelligence (pp. 105-120). Language Science Press.
Och, F. (2006). Statistical Machine Translation Live. Google Research Blog. https://research.google/blog/statistical-machine-translation-live/
Olvera-Lobo, M. D., & Castillo-Rodríguez, C. (2019). Website Localisation in the Corporate Context: A Spanish Perspective. Journal of Digital Information Management, 17(1), 34-43. https://doi.org/10.6025/jdim/2019/17/1/34-43
Peña Aguilar, A. (2023). Challenging Machine Translation Engines: Some Spanish-English Linguistic Problems Put to the Test. Cadernos de Tradução, 43(1), 1-26. https://doi.org/10.5007/2175-7968.2023.e85397
Rico Pérez, C. (2024). Re-thinking Machine Translation Post-Editing Guidelines. The Journal of Specialised Translation, 7, 26-47. https://doi.org/10.26034/cm.jostrans.2024.4696
Rothwell, A., Moorkens, J., Fernández-Parra, M., Drugan, J., & Austermuehl, F. (2023). Software, Web, and Game Localisation. In A. Rothwell, J. Moorkens, M. Fernández-Parra, J. Drugan & F. Austermuehl (Eds.), Translation Tools and Technologies (pp. 174-189). Routledge. https://doi.org/10.4324/9781003160793-10
Singh, N., & Pereira, A. (2005). The Culturally Customized Web Site. Routledge.
Sin-wai, C. (2012). Approaching Localization. In C. Millán & F. Bartrina (Eds.), The Routledge Handbook of Translation Studies (pp. 347-362). Routledge. https://doi.org/10.4324/9780203102893.ch25
Suau Jiménez, F. (2012). El turista 2.0 como receptor de la promoción turística: estrategias lingüísticas e importancia de su estudio. PASOS. Revista de Turismo y Patrimonio Cultural, 10(4), 143-153. https://doi.org/10.25145/j.pasos.2012.10.060
TAUS. (n.d.). Start Tracking Errors with DQF-MQM. https://info.taus.net/dqf-mqf-error-typology-template-download
Tercedor Sánchez, M. (2005). Aspectos culturales en la localización de productos multimedia. Quaderns: Revista de Traducció, 12, 151-160. https://ddd.uab.cat/pub/quaderns/11385790n12/11385790n12p151.pdf