Evaluation of the biostimulant effect on plants with microalgae extracts obtained from a circular economy process
Main Article Content
Abstract
This study evaluated the biostimulant effect of seven microalgae extracts applied to cucumber plants in small pots. The trials were conducted at the Cajamar "Las Palmerillas" Experimental Station, with root applications of different microalgae extracts provided by Biorizon Biotech as part of the Alceres project. Microalgae have emerged as a sustainable alternative to traditional agrochemicals. They contain essential nutrients and phytohormones that promote plant growth and improve soil fertility. The extracts were obtained from three microalgae strains using mechanical-enzymatic methods and biocompatible solvents. The results showed that the extracts corresponding to the ALC1 and ALC3 treatments applied to the root zone of cucumber plants had a significant effect on plant growth and development, highlighting a greater increase in height (21.7 and 22.5 cm), number of leaves (5.4 and 5.3 leaves) and chlorophyll content (SPAD) (22 DDT, ALC1 42.9 μmoles m-² and ALC3 37.6 μmoles m-²), compared to the control and the rest of the treatments. Vegetative dry matter, leaf area and root dry matter were also significantly higher in these treatments (ALC1 and ALC3), with higher values than the rest of the treatments.
Downloads
Publication Facts
Reviewer profiles N/A
Author statements
Indexed in
-
—
- Academic society
- N/A
- Publisher
- Universidad de Córdoba
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Proposed policy for journals offering open access. Those authors who publish in this journal accept the following terms:
a) Authors will retain their copyrights, but guarantee the journal the right to the first publication of their work, which will be simultaneously subject to the Creative Commons Recognition License , which allows third parties to share the work provided that the author and initial publication in this journal is indicated.
b) Authors may subscribe other non-exclusive license agreements for the distribution of the work published (for example: place it in an institutional electronic archive, or publish it in a topical volume) provided that the initial publication in this journal is duly noted.
Authors are allowed and even encouraged to disseminate their work via the Internet (e.g., in institutional electronic files or on their website) before and during the submission process, as this can foster valuable exchanges and increase citations of the work published. (See The effect of open access).
References
• ÁLVAREZ, A., WEYERS, S., GOEMANN, H., PEYTON, B., GARDNER, R. (2021). Investigación sobre algas. Obtenido de Microalgas, suelo y plantas: una revisión crítica de las microalgas como recursos renovables para la agricultura: https://doi.org/10.1016/j.algal.2021.102200
• BUMANDALAI, O., R. TSERENNADMID. (2019). Effect of Chlorella vulgaris as a biofertilizer on germination of tomato and cucumber seeds. International Journal of Aquatic Biology, 7(2), pp. 95-99. ISSN: 2322-5270
• CHIAIESE, P., CORRADO, G., COLLA, G., KYRIACOU, K., ROUPHAEL, Y. (2018). Renewable Sources of Plant Biostimulation: Microalgae as a Sustainable Means to Improve Crop Performance. Recuperado de doi: 10.3389/fpls.2018.01782
• CORONA, Z.C. (2020). Conferencia de apertura. I Taller Soberanía Alimentaria con más Ciencia, Teatro Heredia, Santiago de Cuba, 25 de Septiembre.
• DÍAZ-PÉREZ, M., MORENO, J.M., HERNÁNDEZ, J.J., CALLEJÓN-FERRE, A.J. (2024). Application of microalgae in cauliflower fertilisation. Obtenido de Scientia Horticulturae: https://doi.org/10.1016/j.scienta.2024.113468
• FAHEED, F.A.; FATTAH, Z.A. Effect of Chlorella vulgaris as Biofertiliser on Growth Parameters and Metabolic Aspects of Lettuce. (2008). Plant. J. Agric. Soc. Sci, 4, 165–169.
• GARCIA-GONZALEZ ,J., SOMMERFELD, M. (2016) Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. J Appl Phycol 28:1051–1061. https://doi.org/10.1007/s10811-015-0625-2
• LU, Y. Y XU, J. (2015). Phytohormones in microalgae: A new opportunity for microalgal biotechnology. Trends in Plant Science 20(5), 273-282. https://doi.org/10.1016/j.tplants.2015.01.006
• MEENA, M., SWAPNIL, P., ZHEHRA, A., AAMIR, M., DUBEY, M.K., GOUTAM, J. Y UPADHYAY, R.S. (2017). Beneficial microbes for disease suppression and plant growth promotion. En D.P. Singh, H.B. Singh y R. Prabha (eds.). Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer Nature, Singapore, 395- 432.
• MICHALAK, I., CHOJNACKA, K. (2015). Algae as production systems of bioactive compounds. Engineering in Life Sciences, 15(2), 160-176. https://doi.org/10.1002/ELSC.201400191.
• ORGANIZATION, F. A. (2009). FAO’s Director-General on How to Feed the World in 2050. Population and Development Review, 35(4), 837–839., 1-35. Obtenido de http://www.jstor.org/stable/25593700
• PLAZA, BM, GÓMEZ-SERRANO, C., ACIÉN-FERNÁNDEZ, FG ET AL. (2018) Effect of microalgae hydrolysate foliar application (Arthrospira platensis and Scenedesmus sp.) on Petunia x hybrida growth. J Appl Phycol 30, 2359–2365. https://doi.org/10.1007/s10811-018-1427-0.
• PRASANNA, R., BABU, S., BIDYARANI, N., KUMAR, A., TRIVENI, S., MONGA, D., MUKHERJEE, A. K., KRANTHI, S., NARKHEDKAR, N. K., ADAK, A., YADAV, K., NAIN, L. Y SAXENA, A. K. (2015). Prospecting cyanobacteria-fortified composts as plant growth promoting and biocontrol agents in cotton. Experimental Agriculture 51(1), 42-65. Doi; 10.1017/s0014479714000143
• RENUKA ET AL., 2. (2018). Las microalgas como opciones multifuncionales en la agricultura moderna: tendencias actuales, perspectivas y desafíos. ELSEVIER, 36, 1255-1273. DOI: 10.1016/j.biotechadv.2018.04.004
• REYES, G. E. (2017). Intensidad en el uso de fertilizantes en América Latina y el Caribe (2006-2012). http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1316-33612017000100005&lng=es&tlng=es.
• ROMERO GARCÍA, J.M., ACIÉN FERNÁNDEZ F.G., FERNÁNDEZ SEVILLA J.M. (2012) Development of a process for the production of l-amino-acids concentrates from microalgae by enzymatic hydrolysis. Bioresour Technol 112:164–170. https://doi.org/10.1016/j.biortech.2012.02.094
• SHAABAN, M. (2001) Green microalgae water extract as foliar feeding to wheat plants. Pak J Biol Sci 4(6):628–632.
• SINGH J. S., KUMAR A., RAI A. N.,AND SINGH D. P. (2016). Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability. Front Microbiol. 2016; 7: 529. Doi; 10.3389/fmicb.2016.00529.
• SWAIN, S.S., PAIDESETTY, S.K., PADHY, R.N. (2017). Antibacterial, antifungal and antimycobacterial compounds from cyanobacteria. Biomed. Pharmacother. 90, 760-776. DOI: 10.1016/j.biopha.2017.04.030
• TADESSE K.A., LU, Z., SHEN, Z., DABA, N.A., LI, J., ALAM, M.A., LISHENG, L., GILBERT, N., LEGESSE, T.G., HUIMIN, Z. (2024). Impacts of long-term chemical nitrogen fertilization on soil quality, crop yield, and greenhouse gas emissions: With insights into post-lime application responses. Obtenido de Science of The Total Environment: https://doi.org/10.1016/j.scitotenv.2024.173827
• TORIBIO, A.J.; SUÁREZ-ESTRELLA, F.; JURADO, M.M.; LÓPEZ, M.J; LÓPEZ GONZÁLEZ, J.A.; MORENO, J. (2020). Prospection of cyanobacteria producing bioactive substances and their application as potential phytostimulating agents. Biotechnology Report, 26. https://doi.org/10.1016/j.soilbio.2014.10.020.