Obtaining Biogas from the fermentation of Physalis Peruviana L. processing waste (Aguaymanto)

Main Article Content

Claudia Loarte

Abstract

The industrialization of native and organic agricultural species in Peru has recently increased and diversified rapidly, allowing little-known species of high nutritional value, such as Physalis peruvian L., to become accessible in national and international markets. Consequently, the proper management and utilization of its agro-industrial waste, which is also increasing, is of interest to preserve environmental quality and achieve a circular economy.
This laboratory-level experimental research sought to determine the capacity of solid waste from the industrialization of cape gooseberry to generate biogas, obtain fermentation, and measure the biogas produced, comparing pretreated and pre-inoculated samples with samples without prior treatment. Initial physicochemical analyses were able to identify structural changes in the biomass and its fermentation potential with acetic acid pretreatment at different concentrations compared to sulfuric acid. Statistical analyses evaluated the significance of pretreatment, pre-inoculation, and fermentation. The results concluded that they have the potential to produce biogas, that a 0.2 M acetic acid concentration offers greater advantages over other concentrations and a mineral acid, and that fermentations with a pre-inoculum generate biogas in similar quantities and quality.

Downloads

Download data is not yet available.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
2
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
No
11%
Metric
This journal
Other journals
Articles accepted 
45%
33%
Days to publication 
73
145

Indexed in

Editor & editorial board
profiles
Academic society 
N/A

Article Details

How to Cite
Loarte, C. (2025). Obtaining Biogas from the fermentation of Physalis Peruviana L. processing waste (Aguaymanto). C3-BIOECONOMY: Circular and Sustainable Bioeconomy, (6), 29–48. Retrieved from https://journals.uco.es/bioeconomy/article/view/18688
Section
Articles

References

1. AOAC. (2006). Official Methods of Analysis. Gaithersburg: AOAC International

2. CHUM, H. L., JOHNSON, D. K. y BLACK, S. K. (1990) Organosolv pretreatment for enzymic hydrolysis of poplars. 2. Catalyst effects and the combined severity parameter. Ind Eng Chem Res, 29(1), 156–62. doi: http://dx.doi.org/10.1021/ie00098a003.

3. GARCÍA, M. A. y GÓMEZ, J. D. (2016). Evaluación de la producción de biogás a partir de residuos vegetales obtenidos en la central de abastos de Bogotá mediante digestión anaerobia. Recuperado de: https://repository.uamerica.edu.co/items/46778e23-2085-48c8-a7ef-b8fc700c791b

4. HERNÁNDEZ, H. A. (2012). Diseño de un biodigestor instrumentado electrónicamente para la generación de biogás en casa habitación. Recuperado de: https://repositorio.unam.mx/contenidos/diseno-de-un-biodigestor-instrumentado-electronicamente-para-la-generacion-de-biogas-en-casa-habitacion-1?c=Ezg0Qn&d=false&q=*:*&i=2&v=1&

t=search_0&as=0

5. LEE, D., NAM, H., WON, M., LEE, V.H., TORMUNZIN, D., WANG, S. y YONG, P. (2022). Recent progress in the catalytic thermochemical conversion process of biomass for biofuels. Chemical Engineering Journal, 447 (1), 137501. doi: https://doi.org/10.1016/j.cej.2022.137501

6. LI Y. B., PARK S. Y ZHU, J. Y. (2011) Solid-state anaerobic digestion for methane production from organic waste. Renewable Sustainable Energy Reviews, 15(1), 821–826. doi: http://dx.doi.org/10.1016/j.rser.2010.07.042.

7. NEILSON, R. y THORNTON, R. (1987). Organic Chemistry. Boston: Pearson Education.

8. OROZCO, R. S., HERNANDEZ, P. B., MORALES, G. R., NUNEZ, F. U., VILLAFUERTE, J. O. y LUGO, V. L. (2014). Characterization of lignocellulosic fruit waste as an alternative feedstock for bioethanol production. BioResources,9(1),1873–1885.

9. PÁEZ, J.S. (2017). Análisis de la capacidad de fermentación de los residuos de uchuva para la obtención de biogás. Recuperado de: https://repositorio.uniandes.edu.co/entities/publication/25a3ed32-

ba90-48d3-8866-746d075e8208

10. PUENTE, L. A., PINTO, C. A., CASTRO, E. S. Y CORTÉS, M. (2011). Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Research International, 44(7), 1733-1740. doi: https://doi.org/10.1016/j.foodres.2010.09.034.

11. SAHA, S., KURADE, M. B., EL-DALATONY M. M., CHATTERJEE, P. K., SUNG, D., y JEON, B. (2016). Improving bioavailability of fruit waste using organic acid: An exploratory study of biomass pretreatment for fermentation. Energy Conversion and Management, 127 (1), 256–264. doi: https://doi.org/10.1016/j.enconman.2016.09.016

12. SIERRA Y SELVA EXPORTADORA. (2020). Análisis de Mercado Aguaymanto 2015 - 2020. Lima: MINISTERIO DESARROLLO AGRARIO Y RIEGO.

13. SPANGHERO, M., SALEM, A. Z. M. y ROBINSON, P.H. Chemical composition, including secondary metabolites, and rumen fermentability of seeds and pulp of Californian (USA) and Italian grape pomaces. Animal Feed Science Technology.152(1), 243–255. doi: http://dx.doi.org/10.1016/j.anifeedsci.2009.04.015

14. YANG, B. y WYMAN, C. E. (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels, Bioproducts and Biorefining, 2,26–40. doi: http://dx.doi.org/10.1002/bbb.49.

15. ZAINUDIN, M. H. M., ZULKARNAIN, A., AZMI, A. S., MUNIANDY, S., S., SAKAI, K., SHIRAI, Y., y HASSAN, M. A. (2022). Enhancement of Agro-Industrial Waste Composting Process via the Microbial Inoculation: A Brief Review. Agronomy, 12(1), 198-250. doi: https://doi.org/10.3390/agronomy12010198