Aplicando minería de datos para descubrir rutas de aprendizaje frecuentes en Moodle

Main Article Content

Alejandro Bogarín Vega
Cristóbal Romero Morales
Rebeca Cerezo Menéndez

Abstract

En este artículo, aplicamos técnicas de minería de datos para descubrir rutas de aprendizaje frecuentes. Hemos utilizado datos de 84 estudiantes universitarios, seguidos en un curso online usando Moodle 2.0. Proponemos agrupar a los estudiantes, en primer lugar, a partir de los datos de una síntesis de uso de Moodle y/o las calificaciones finales de los alumnos en un curso. Luego, usamos los datos de los logs de Moodle sobre cada cluster/grupo de estudiantes separadamente con el fin de poder obtener más específicos y  precisos modelos de procesos del comportamiento de los estudiantes.

Downloads

Download data is not yet available.

Article Details

How to Cite
Bogarín Vega, A., Romero Morales, C., & Cerezo Menéndez, R. (2016). Aplicando minería de datos para descubrir rutas de aprendizaje frecuentes en Moodle. EDMETIC, 5(1), 73–92. https://doi.org/10.21071/edmetic.v5i1.4017
Section
Artículos

References

AZEVEDO, R., BEHNAGH, R., DUFFY, M., HARLEY, J., y TREVORS, G. (2012). Metacognition and self-regulated learning in student-centered leaning environments. Theoretical foundations of student-centered learning environments, 171-197.

KLÖSGEN, W., y ZYTKOW, J. M. (2002). Handbook of data mining and knowledge discovery. Oxford: University Press, Inc.

MULDNER, K., BURLESON, W., VAN DE SANDE, B., y VANLEHN, K. (2011). An analysis of students’ gaming behaviors in an intelligent tutoring system: predictors and impacts. User Modeling and User-Adapted Interaction, 21(1-2), 99-135.

PECHENIZKIY, M., TRCKA, N., VASILYEVA, E., VAN DER AALST, W., y DE BRA, P. (2009). Process Mining Online Assessment Data. International Working Group on Educational Data Mining.

PEDRAZA-PEREZ, R., ROMERO, C., &y VENTURA, S. (2011). A Java desktop tool for mining Moodle data. En Proceedings of 4th International Conference on Educational Data Mining (pp. 319-320).

PERERA, D., KAY, J., KOPRINSKA, I., YACEF, K., y ZAÏANE, O. R. (2009). Clustering and sequential pattern mining of online collaborative learning data. Knowledge and Data Engineering, IEEE Transactions on, 21(6), 759-772.

RABBANY, R., TAKAFFOLI, M., y ZAÏANE, O. R. (2011). Analyzing participation of students in online courses using social network analysis techniques. En Proceedings of educational data mining.

ROMERO, C., y VENTURA, S. (2010). Educational data mining: a review of the state of the art. Systems, Man, and Cybernetics, Part C: Applications and Reviews. IEEE Transactions on, 40(6), 601-618.

ROMERO, C., VENTURA, S., y GARCÍA, E. (2008). Data mining in course management systems: Moodle case study and tutorial. Computers & Education, 51(1), 368-384.

ROMERO, C., VENTURA, S., ZAFRA, A., y BRA, P. D. (2009). Applying Web usage mining for personalizing hyperlinks in Web-based adaptive educational systems. Computers & Education, 53(3), 828-840.

SIEMENS, G., & D BAKER, R. S. (2012, April). Learning analytics and educational data mining: towards communication and collaboration. En Proceedings of the 2nd international conference on learning analytics and knowledge (pp. 252-254). ACM.

SOUTHAVILAY, V., YACEF, K., y CALVO, R. A. (2010, June). Process Mining to Support Students' Collaborative Writing. En EDM (pp. 257-266).

TRCKA, N., & PECHENIZKIY, M. (2009, November). From local patterns to global models: Towards domain driven educational process mining. En Intelligent Systems Design and Applications, 2009. ISDA'09. Ninth International Conference on (pp. 1114-1119). IEEE.

VAN DER AALST, W. M. (2011). Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg.

WITTEN, I. H., y FRANK, E. (2005). Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann.